Note

THE THERMAL DECOMPOSITION OF VANADYL(IV) HEXACYANOFERRATE(II), $(VO)_2$ [Fe(CN)₆] · 10H₂O

S.B. ETCHEVERRY and E.J. BARAN

Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina)

(Received 13 June 1986)

In a recently published paper we have described the preparation and some properties of vanadyl(IV) pentacyanonitrosylferrate(II), VO[Fe $(CN)_5NO] \cdot 2H_2O$ [1]. This compound has shown a very interesting thermal behaviour, which differs markedly from that known for other crystalline pentacyanonitrosylferrates(II) with different cations [2–5].

As we could also obtain very pure samples of the corresponding hexacyanoferrate(II), $(VO)_2[Fe(CN)_6] \cdot 10H_2O$ [1], it is also interesting to investigate the thermal degradation of this complex compound.

EXPERIMENTAL

Pure samples of $(VO)_2[Fe(CN)_6] \cdot 10H_2O$ were prepared as previously described, by a double decomposition reaction between Li₄[Fe(CN)₆] and VOSO₄ solutions [1]. They were characterized by chemical analysis and IR and electronic spectroscopies.

Thermogravimetric and differential thermal analyses were carried out simultaneously on a Rigaku thermoanalyser (type (YLDG/CN 8002 L2) using a chromel/alumel thermoelement and working under a constant nitrogen flow (0.4 1 min⁻¹). The heating rate was 10°C min⁻¹ and Al₂O₃ was used as a DTA standard. The sample weight ranged between 20 and 25 mg and the maximum heating temperature was 700°C.

RESULTS AND DISCUSSION

Typical TG and DTA curves are shown in Fig. 1. The quantitative evaluation of the thermogravimetric curve is presented in Table 1.

It can be observed that in a first step, eight water molecules are lost:

 $(VO)_{2}[Fe(CN)_{6}] \cdot 10H_{2}O \rightarrow (VO)_{2}[Fe(CN)_{6}] \cdot 2H_{2}O + 8H_{2}O$ (1)

Fig. 1. Typical TG and DTA plots of (VO)₂[Fe(CN)₆]·10H₂O.

The loss of the two remaining water molecules occurs in a very complex way, which involves the evolution of HCN and the generation of VO₂ and "Fe(CN)₂"—which should be better formulated as $Fe_2[Fe(CN)_6]$ —as solid products:

$$(\dot{VO})_2[Fe(CN)_6] \cdot 2H_2O \rightarrow 2VO_2 + "Fe(CN)_2" + 4HCN$$
 (2)

The DTA curve corresponding to this second step shows three broad and not well defined endothermic peaks. This second step reaches 520° C. The last degradation process begins at this temperature. It is associated with the sharp, well-defined DTA peak at 561° C and implies the thermolysis of "Fe(CN)₂":

$$"Fe(CN)_2" \rightarrow Fe + (CN)_2 \tag{3}$$

According to these results, the following overall decomposition scheme

$ \frac{T (°C)}{~86 (sh)} $	Wt. loss (%) 27.5	Products (% theor.)		DTA signal
		8H ₂ O	(27.4)	endo endo endo
381 441	20.5	4HCN	(20.5)	endo endo
561	10.1	(CN) ₂	(9.9)	endo

TABLE 1 Analysis of the thermal data of (VO)₂[Fe(CN)₆]·10H₂O can be formulated:

$$(VO)_{2}[Fe(CN)_{6}] \cdot 10H_{2}O \rightarrow 2VO_{2} + Fe + 4HCN + (CN)_{2} + 8H_{2}O$$
 (4)

This scheme suggests the presence of two water molecules, which being more tightly bound, are decomposed in the second degradation step with the release of HCN in a similar way as observed during the thermal decomposition of VO[Fe(CN)₅NO] \cdot 2H₂O [1]. These two water molecules are surely bound directly to the two VO²⁺ cations, probably in *trans*-position to the V=O bond.

A remarkable fact of the investigated process is the final degradation step in which, together with the cyanogen evolution, elemental iron is produced. The generation of $(CN)_2$ at higher temperatures, has often been observed in the case of Fe(II) cyano-complexes [2,3] but, according to a proposal made by Seifer [6], the formation of Fe₃C as the final solid residue is normally postulated. Notwithstanding, in the present case the generation of elemental iron is unambiguously supported by a great number of measurements of different $(VO)_2[Fe(CN)_6] \cdot 10H_2O$ samples. A catalytic action of the previously generated VO₂ might be possible in this last degradation step.

ACKNOWLEDGEMENTS

This research is supported by CONICET (Programa QUINOR) and CICPBA. This investigation is also part of a special research program devoted to the chemistry and biochemistry of vanadium which is supported by the Foundation "Volkswagenwerk" (Hannover, F.R.G.).

REFERENCES

- 1 E.J. Baran, S.B. Etcheverry and R.C. Mercader, Z. Anorg. Allg. Chem., 531 (1985) 199.
- 2 M.M. Chamberlain and A.F. Greene, J. Inorg. Nucl. Chem., 25 (1963) 1471.
- 3 L.A. Gentil, J.A. Olabe, E.J. Baran and P.J. Aymonino, J. Therm. Anal., 7 (1975) 279.
- 4 J.I. Amalvy, E.L. Varetti and P.J. Aymonino, J. Phys. Chem. Solids, 46 (1985) 1153.
- 5 J.I. Amalvy, E.L. Varetti and P.J. Aymonino, An. Asoc. Quim. Argent., in press.
- 6 G.B. Seifer, Russ. J. Inorg. Chem., 5 (1960) 33.